BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics.
نویسندگان
چکیده
Inorganic nanomaterials that mimic enzymes are fascinating as they potentially have improved properties relative to native enzymes, such as greater resistance to extremes of pH and temperature and lower sensitivity to proteases. Although many artificial enzymes have been investigated, searching for highly-efficient and stable catalysts is still of great interest. In this paper, we first demonstrated that bovine serum albumin (BSA)-stabilized MnO(2) nanoparticles (NPs) exhibited highly peroxidase-, oxidase-, and catalase-like activities. The activities of the BSA-MnO(2) NPs were evaluated using the typical horseradish peroxidase (HRP) substrates o-phenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of either hydrogen peroxide or dissolved oxygen. These small-sized BSA-MnO(2) NPs with good dispersion, solubility and biocompatibility exhibited typical Michaelis-Menten kinetics and high affinity for H(2)O(2), OPD and TMB, indicating that BSA-MnO(2) NPs can be used as satisfactory enzyme mimics. Based on these findings, BSA-MnO(2) NPs were used as colorimetric immunoassay tags for the detection of goat anti-human IgG in place of HRP. The colorimetric immunoassay using BSA-MnO(2) NPs has the advantages of being fast, robust, inexpensive, easily prepared and with no HRP and H(2)O(2) being needed. These water-soluble BSA-MnO(2) NPs may have promising potential applications in biotechnology, bioassays, and biomedicine.
منابع مشابه
Comparison of MnO2 nanoparticles and microparticles distribution in CNS and muscle and effect on acute pain threshold in rats
Objective(s): Recently, applications of MnO2 nanoparticles and microparticles in industry, pharmacology, and medicine have considerably expanded. Mn distribution and clearance from brain and spinal cord tissue compared with muscle tissue of rats after single subcutaneous injection of nanoparticles and microparticle of MnO2. Pain sensory threshold of rat was evaluated as neurologic consequence...
متن کاملOne-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin.
We developed a facile one-step approach to synthesize DNA-templated Ag/Pt bimetallic nanoclusters (DNA-Ag/Pt NCs), which possess highly-efficient peroxidase-like catalytic activity. With this finding, an aptamer based sandwich-type strategy is employed to design a label-free colorimetric aptasensor for the protein detection with high sensitivity and selectivity.
متن کاملEffects of Subcutaneous Injection MnO2 Micro- and Nanoparticles on Blood Glucose Level and Lipid Profile in Rat
Background: The use of nanotechnology has led to rapid growth in various areas. Thus, health and safety issues of nanoparticles (NPs) should be promptly addressed. Manganese oxide (MnO2) nanoparticles (NPs) are typically used for biomedical and industrial applications. However, characterizing the potential human health effects of MnO2 NPs is required before fully exploiting these materials. The...
متن کاملGold nanoparticle-enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction.
In this paper, we report a new strategy for highly sensitive determination of hydrogen peroxide, glucose and uric acid based on fluorescence resonance energy transfer (FRET) using gold nanoparticles (AuNPs) as energy acceptors. The principle is based on highly sensitive reaction of tetramethyl rhodamine (TMR) labeled tyramide and hydrogen peroxide catalysed by horseradish peroxidase (HRP), and ...
متن کاملProtein-templated biomimetic silica nanoparticles.
Biomimetic silica particles can be synthesized as a nanosized material within minutes in a process mimicked from living organisms such as diatoms and sponges. In this work, we have studied the effect of bovine serum albumin (BSA) as a template to direct the synthesis of silica nanoparticles (NPs) with the potential to associate proteins on its surface. Our approach enables the formation of sphe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 137 19 شماره
صفحات -
تاریخ انتشار 2012